20,119 research outputs found

    Giant nonlinear conduction and thyristor-like negative derivative resistance in BaIrO3 single crystals

    Full text link
    We synthesized single-crystalline samples of monoclinic BaIrO3 using a molten flux method, and measured their magnetization, resistivity, Seebeck coefficient and nonlinear voltage-current characteristics. The magnetization rapidly increases below a ferromagnetic transition temperature TC of 180 K, where the resistivity concomitantly shows a hump-type anomaly, followed by a sharp increase below 30 K. The Seebeck coefficient suddenly increases below TC, and shows linear temperature dependence below 50 K. A most striking feature of this compound is that the anomalously giant nonlinear conduction is observed below 30 K, where a small current density of 20 A/cm2 dramatically suppresses the sharp increase in resistivity to induce a metallic conduction down to 4 K.Comment: 10 pages, 4 figures Submitted to Physical Review Letter

    Planet formation around stars of various masses: The snow line and the frequency of giant planets

    Full text link
    We use a semi-analytic circumstellar disk model that considers movement of the snow line through evolution of accretion and the central star to investigate how gas giant frequency changes with stellar mass. The snow line distance changes weakly with stellar mass; thus giant planets form over a wide range of spectral types. The probability that a given star has at least one gas giant increases linearly with stellar mass from 0.4 M_sun to 3 M_sun. Stars more massive than 3 M_sun evolve quickly to the main-sequence, which pushes the snow line to 10-15 AU before protoplanets form and limits the range of disk masses that form giant planet cores. If the frequency of gas giants around solar-mass stars is 6%, we predict occurrence rates of 1% for 0.4 M_sun stars and 10% for 1.5 M_sun stars. This result is largely insensitive to our assumed model parameters. Finally, the movement of the snow line as stars >2.5 M_sun move to the main-sequence may allow the ocean planets suggested by Leger et. al. to form without migration.Comment: Accepted to ApJ. 12 pages of emulateap

    Comments on differential cross section of phi-meson photoproduction at threshold

    Get PDF
    We show that the differential cross section d_sigma/d_t of gamma p --> \phi p reaction at the threshold is finite and its value is crucial to the mechanism of the phi meson photoproduction and for the models of phi-N interaction.Comment: 8 pages, 2 figure

    Enhanced thermoelectric properties by Ir doping of PtSb2 with pyrite structure

    Get PDF
    The effects of Ir doping on the thermoelectric properties of Pt1-xIrxSb2 (x = 0, 0.01, 0.03, and 0.1) with pyrite structure were studied. Measurements of electrical resistivity rho, Seebeck coefficient S, and thermal conductivity kappa were conducted. The results showed an abrupt change from semiconducting behavior without Ir (x = 0) to metallic behavior at x = 0.01. The sample with x = 0.01 exhibited large S and low rho, resulting in a maximum power factor (S^2/rho) of 43 muW/cmK^2 at 400 K. The peculiar "pudding mold"-type electronic band dispersion could explain the enhanced thermoelectric properties in the metallic state.Comment: 3 pages, 2 figure

    Drude Weight of the Two-Dimensional Hubbard Model -- Reexamination of Finite-Size Effect in Exact Diagonalization Study --

    Full text link
    The Drude weight of the Hubbard model on the two-dimensional square lattice is studied by the exact diagonalizations applied to clusters up to 20 sites. We carefully examine finite-size effects by consideration of the appropriate shapes of clusters and the appropriate boundary condition beyond the imitation of employing only the simple periodic boundary condition. We successfully capture the behavior of the Drude weight that is proportional to the squared hole doping concentration. Our present result gives a consistent understanding of the transition between the Mott insulator and doped metals. We also find, in the frequency dependence of the optical conductivity, that the mid-gap incoherent part emerges more quickly than the coherent part and rather insensitive to the doping concentration in accordance with the scaling of the Drude weight.Comment: 9 pages with 10 figures and 1 table. accepted in J. Phys. Soc. Jp

    Two dimensional electrophysiological characterization of human pluripotent stem cell-derived cardiomyocyte system.

    Get PDF
    Stem cell-derived cardiomyocytes provide a promising tool for human developmental biology, regenerative therapies, disease modeling, and drug discovery. As human pluripotent stem cell-derived cardiomyocytes remain functionally fetal-type, close monitoring of electrophysiological maturation is critical for their further application to biology and translation. However, to date, electrophysiological analyses of stem cell-derived cardiomyocytes has largely been limited by biologically undefined factors including 3D nature of embryoid body, sera from animals, and the feeder cells isolated from mouse. Large variability in the aforementioned systems leads to uncontrollable and irreproducible results, making conclusive studies difficult. In this report, a chemically-defined differentiation regimen and a monolayer cell culture technique was combined with multielectrode arrays for accurate, real-time, and flexible measurement of electrophysiological parameters in translation-ready human cardiomyocytes. Consistent with their natural counterpart, amplitude and dV/dtmax of field potential progressively increased during the course of maturation. Monolayer culture allowed for the identification of pacemaking cells using the multielectrode array platform and thereby the estimation of conduction velocity, which gradually increased during the differentiation of cardiomyocytes. Thus, the electrophysiological maturation of the human pluripotent stem cell-derived cardiomyocytes in our system recapitulates in vivo development. This system provides a versatile biological tool to analyze human heart development, disease mechanisms, and the efficacy/toxicity of chemicals

    Ring Formation in Magnetically Subcritical Clouds and Multiple Star Formation

    Get PDF
    We study numerically the ambipolar diffusion-driven evolution of non-rotating, magnetically subcritical, disk-like molecular clouds, assuming axisymmetry. Previous similar studies have concentrated on the formation of single magnetically supercritical cores at the cloud center, which collapse to form isolated stars. We show that, for a cloud with many Jeans masses and a relatively flat mass distribution near the center, a magnetically supercritical ring is produced instead. The supercritical ring contains a mass well above the Jeans limit. It is expected to break up, through both gravitational and possibly magnetic interchange instabilities, into a number of supercritical dense cores, whose dynamic collapse may give rise to a burst of star formation. Non-axisymmetric calculations are needed to follow in detail the expected ring fragmentation into multiple cores and the subsequent core evolution. Implications of our results on multiple star formation in general and the northwestern cluster of protostars in the Serpens molecular cloud core in particular are discussed.Comment: 25 pages, 4 figures, to appear in Ap

    S wave superconductivity in newly discovered superconductor BaTi2_2Sb2_2O revealed by 121/123^{121/123}Sb-NMR/Nuclear Quadrupole Resonance measurements

    Get PDF
    We report the 121/123^{121/123}Sb-NMR/nuclear quadrupole resonance (NQR) measurements on the newly-discovered superconductor BaTi2_2Sb2_2O with a two-dimensional Ti2_2O square-net layer formed with Ti3+^{3+} (3d1d^1). NQR measurements revealed that the in-plane four-fold symmetry is broken at the Sb site below TAT_{\rm A} \sim 40 K, without an internal field appearing at the Sb site. These exclude a spin-density wave (SDW)/ charge density wave (CDW) ordering with incommensurate correlations, but can be understood with the commensurate CDW ordering at TAT_{\rm A}. The spin-lattice relaxation rate 1/T11/T_1, measured at the four-fold symmetry breaking site, decreases below superconducting (SC) transition temperature TcT_{\rm c}, indicative of the microscopic coexistence of superconductivity and the CDW/SDW phase below TAT_{\rm A}. Furthermore, 1/T11/T_1 of 121^{121}Sb-NQR shows a coherence peak just below TcT_{\rm c} and decreases exponentially at low temperatures. These results are in sharp contrast with those in cuprate and iron-based superconductors, and strongly suggest that its SC symmetry is classified to an ordinary s-wave state.Comment: 5 pages, 6 figure

    Self-force Regularization in the Schwarzschild Spacetime

    Full text link
    We discuss the gravitational self-force on a particle in a black hole space-time. For a point particle, the full (bare) self-force diverges. The metric perturbation induced by a particle can be divided into two parts, the direct part (or the S part) and the tail part (or the R part), in the harmonic gauge, and the regularized self-force is derived from the R part which is regular and satisfies the source-free perturbed Einstein equations. But this formulation is abstract, so when we apply to black hole-particle systems, there are many problems to be overcome in order to derive a concrete self-force. These problems are roughly divided into two parts. They are the problem of regularizing the divergent self-force, i.e., ``subtraction problem'' and the problem of the singularity in gauge transformation, i.e., ``gauge problem''. In this paper, we discuss these problems in the Schwarzschild background and report some recent progress.Comment: 34 pages, 2 figures, submitted to CQG, special volume for Radiation Reaction (CAPRA7
    corecore